Is KCl a reliable extractant of $^{15}NH_4^+$ added to coastal marine sediments?

M.C.J. LAIMA

Department of Marine Geology, University of Aarhus, Building 520, Ny Munkegade DK-8000 Aarhus C, Denmark

Received 23 December 1993; accepted 22 April 1994

Key words: ammonium, KCl extraction, marine sediments ¹⁵N-labelled ammonium

Abstract. The release of NH₄⁺ and ¹⁵N-labelled NH₄⁺ by one-step KCl extraction was assessed in different types of coastal marine sediments. KCl was efficient to extract NH₄⁺ from sandy sediments and less efficient in silt sediments, where an extended extraction period was required for obtaining a maximum NH₄ yield. Extraction at 0 or 20 °C had only a little effect on the efficiency of KCl. KCl gave always non complete recovery of ¹⁵NH₄⁺ in silt sediments. However, the added label could be fully recovered by addition of 80 μ mol cm⁻³ exogenous NH₄⁺ prior to KCl, or when NaCl or ASW replaced KCl. ¹⁵NH₄⁺ was added to non-biological silt sediment, which was incubated at 0 °C up to 16 hours, to see the effect of physical processes on the partition of ¹⁵NH₄ among porewater (29-49%) exchangeable (9-30%) and non-extractable, organic bound pools (24–42%). Total ¹⁵N recovery was approximately 100%. KCl failed to remove ¹⁵NH₄ which entered to unknown, bound pools in sediment. Only shortly after addition of ¹⁵N (0.1 h), the extraction period resulted in significantly different ¹⁵N recoveries (P < 0.05) in KCl extractable NH₄⁺, 17% versus 9% of label was recovered after 1 min or 60 min extraction of sediment, respectively. Two hours of incubation time were required for complete equilibrium of ¹⁵NH₄⁺ among porewater, exchangeable and organic bound pools. Sediments (silt) to which ¹⁵NH₄⁺ has been added in order to measure NH₄⁺ turn-over and KCl is used as extractant, should be incubated for at least 2 hours, before taking a zero-time sample.

Introduction

The predominant nitrogen species in O_2 -limited sediments is NH_4^+ . There are possible fates of NH_4^+ , such as it remaining in a dissolved form in the interstitial water, joining the exchangeable pool or becoming fixed as non-exchangeable NH_4^+ . KCl has been the most used technique to quantify the pool of exchangeable NH_4^+ in marine sediments (Mackin & Aller 1984) and soils (Bremner 1965). There are variations in the use of the technique with regard to the degree of agitation (Haines et al. 1977), the molarity of KCl solution (Bremner 1965), the extraction period (Simon & Kennedy 1987). Recently, some authors have pointed out problems associated with the use of KCl, as it seems unclear whether this reagent is unable to quantitatively extract exchangeable nitrogen species, or if other nitrogen forms are being extracted as well (Brodrick et al. 1987). On the other hand, it was observed that a one-step KCl extraction did not recover all $^{15}NH_4^+$ added to marine sediments, which may underestimate calculated NH_4^+ turn-over rates in these

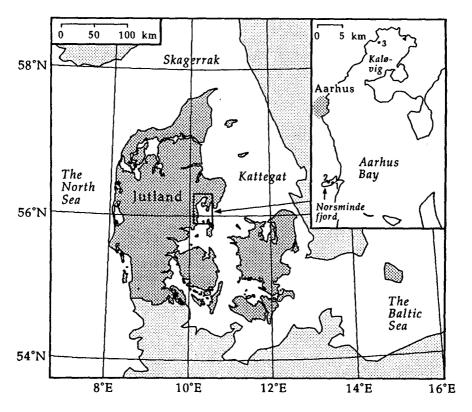


Fig. 1. Map of Jutland (Denmark), showing location of Stations 1 & 2 (Norsminde fjord), and Station 3 (Kaløvig).

environments (Laima, unpublished). A possible fate of some added ¹⁵NH₄⁺ could be the entry to sediment pools from which it could not be extracted by KCL (Laima 1993).

This communication reports my attempt to improve the effectiveness of one-step KCl extraction, to quantify the exchangeable NH_4^+ pool and to recover all $^{15}NH_4^+$ added to marine sediments. Assays were carried out to determine: 1 – Effect of sediment type, extraction period and temperature on the KCl extraction of NH_4^+ ; 2 – Comparison of KCl with NaCl and seawater in the extraction of $^{15}NH_4^+$; 3 – Effect of exogenous NH_4^+ additions on ^{15}N recovery; 4 – Effect of KCl on the incorporation of $^{15}NH_4^+$ into sediment pools.

Sampling and methods

Sites

Sediments were collected at the east coast of Jutland, Denmark (Fig. 1). Two stations (Stns 1 & 2) were situated at Norsminde fjord, a small estuary of 1.9 km² with a narrow entrance to the sea (Jørgensen & Sørensen 1985). The irregular water exchange produces a fluctuation of salinity levels in this fjord (Muus 1967). The sediment from Stn. 1 was sandy (1% of organic matter or OM), until a depth of 7–8 cm. A fine textured sand/silt sediment (2.5% of OM) dominated at Stn. 2. Stn. 3 was located at KaløVig, a small bay situated 20 Km north of Aarhus. The sediment was a fine silt (20% of OM). Sediments were sampled using plexiglass coring tubes (3.6 cm i.d., 15 cm long), and transported quickly to the laboratory.

Characterization of sediments

In the laboratory, batches of sediment from the 0-4 cm stratum were sieved through a 4 mm mesh to remove shells and other particles, homogenized and stored at -20 °C until further processing. Organic content was determined as ignition loss of dried sediments at 500 °C, during 12 hours. The H₂O content was determined in weighed fractions of known volume which were dried to constant weight at 105 °C. Specific density was determined gravimetrically, in duplicate. The H₂O content and specific density data were used to convert the concentrations of extractable NH₄⁺ in units of wet sediment, μ mol·cm⁻³.

Nitrification inhibitor

A dicyandiamide solution (McCarthy & Bremner 1989) was prepared at a concentration of 0.4 g/l deionized H_2O and applied at 100 ml kg⁻¹ sediment. In the assays described below, dicyandiamide was applied at 15 μ g g⁻¹ wet sediment. Nitrification is inhibited at temperatures not exceeding 15 °C (Amberger 1989).

Effects of extraction period and temperature on the KCl extraction of NH₄⁺

Sandy, silt/sand and silty sediments were weighed into 500-ml beakers, under a stream of N_2 . 2M KCl was added at a sediment:extractant ratio of 1:1, vol:wt. Slurries were very well mixed and 10 ml volumes (n = 45) were dispensed anaerobically into weighed glass centrifuge tubes (100 by 14.5 mm i.d.), using an open-ended syringe. The tubes were closed with butyl stoppers, reweighed and one series was incubated in a ice-bath (0 °C) using a rotary shaker R010 (Gerhardt, Germany) adjusted to 80 strokes min⁻¹. The

other series was incubated at 15 °C in the same way. At 0, 10, 40, 80, 160 and 200 min of exposure to KCl, samples were taken (n = 3) from each series and centrifuged at $3000 \times g$, for 5 min. Supernatants were collected and stored at -20 °C, until analysis of KCl extractable NH₄⁺. The most suitable extraction parameters (extraction time, temperature) were used in the ¹⁵N assays.

Comparison of KCl with NaCl and seawater in the extraction of added $^{15}NH_4^+$

The recovery of added $^{15}NH_4^+$ was assessed in three sediment types using KCl, NaCl and artificial seawater (ASW) as extractant solutions. Twenty ml of anaerobic, N₂-bubbled seawater containing $^{15}NH_4^+$ (99.7% ^{15}N , Amersham) and a nitrification inhibitor were added to sandy, sand/silt and fine silt sediments. Final concentrations of $^{15}NH_4^+$ were respectively, 0.6, 0.1 and 0.3 μ mol·cm⁻³ of wet sediment. This corresponded to a 10% increase in KCl-extractable NH₄⁺, as determined before the addition of label. Each sediment was then divided into 3 series, receiving, respectively, 2M KCl, 2M NaCl and ASW (prepared by dissolving 25 gr NaCl, 8 gr MgSO₄7H₂O and 0.035 gr NaHCO₃ in 1 l deionized H₂O). Final pH was 7.0 for all treatments. An extractant:sediment ratio of 1:1 was used as above. Slurries were shaken during 40 min (sand, sand/silt) or 160 min (silt) at 0 °C. Supernatants were collected and stored at -20 °C until analysis of total NH₄⁺ (unlabelled plus ^{15}N -labelled NH₄⁺) and of atom $^{8}^{15}NH_4^{+}$.

Effect of exogenous NH₄⁺ on ¹⁵N recovery in silt sediments

Exogenous NH₄⁺ was added prior to ¹⁵N₄ and KCl for occupation of available exchangeable sites in sediment. A non-biological silt sediment was dispensed anoxically into 10 ml glass tubes (n = 42), in two series. To one series were added 0, 2, 15, 30, 53, 75 and 150 μ moles NH₄⁺·cm⁻³ in 1.0 ml. ¹⁵NH₄⁺ (0.3 μ moles·cm⁻³ sediment) was then added. The other series was treated similarly and received 2M KCl as above. The slurries were extracted at 0 °C during 160 min. Centrifugation of slurries and collection of supernatants were done as before. The pools extracted are named NH₄⁺-extractable and (NH₄⁺ + K⁺)-extractable.

Effect of KCl on the incorporation of ${}^{15}NH_4^+$ into sediment pools

A possible role of KCl on the disappearance of $^{15}NH_4^+$ added to the silt sediment (Stn. 3) was investigated, because one-step KCl gave a low recovery of label in exchangeable pools. Slurries from a non-biological silt sediment were labelled with $^{15}NH_4^+$ (0.3 μ mol·cm⁻³ sediment) and were dispensed into 50 ml plastic tubes (n=21), under a stream of N_2 . The tubes were

closed with butyl stoppers and gently shaken at 0 °C, as previously. At time intervals of 0.1, 1, 2, 4, 8, 12 and 16 h, samples (n = 3) were centrifuged at $3000 \times g$ during 5 min, and supernatants collected(P₁). The respective pellets were mixed with 2M KCl. The tubes were again closed under N₂. One series was shaken for 1 min at 0 °C, whereas the other series was shaken for 60 min, at the same temperature. Respective extracts contain the residual NH₄⁺ in porewater plus NH₄⁺ exchangeable with KCl (P₂). The remainder residue was dried (105 °C) and subjected to HF treatment and Kjeldahl digestion (Wang & Øien 1986), to obtain the fraction of non-exchangeable NH₄⁺ (P₃).

Chemical analysis

NH₄⁺ was analysed in suitable dilutions of extract (KCl, NaCl and seawater) or after diffusion of extracts (Kjeldahl), using a modification of the salicylate-hypochlorite method (Laima 1992). Sample diffusates were distilled prior to analysis, to ensure a normal colour development owing to NH₄⁺. A diffusion chamber was used, which consisted of a 13 ml serum bottle with a butyl rubber stopper, through which was inserted a Pasteur pipette. The end of the Pasteur pipette was sealed and rounded; it extended 1 cm through the stopper. Saturated NaOH (2.0 ml) was added to the sample (extract or standard, 2.0 ml) to make it alkaline. The NH₃ diffused upwards and was trapped by a film of 2.5 mol l⁻¹ H₂SO₄ which coated the round pipette bulb. The microdiffusion of NH₃ was enhanced by gentle shaking, and was complete within 2–3 days of diffusion time at 22 °C. The glass bulb was then detached, dropped into 2 ml of distilled water and the NH₄⁺ content was determined. Concentrations were corrected for dilution and NH₄⁺ from the dicyandiamide solution.

The ¹⁵N atom % was analysed after microdiffusion of samples (Laima 1993), using an Isogas Mass Spectrometer (Middlewich, Cheshire, UK) linked to a microcomputer.

Results and discussion

Extraction of endogenous NH₄⁺

The pool size of extractable NH_4^+ depended on the extraction period, temperature and sediment type (Fig. 2). KCl was efficient in sandy sediments and poorly efficient in silty sediments. The NH_4^+ was slowly extracted from silty sediments, the pool size increased and was constant during 40–160 min, and declining afterwards (Fig. 2C). This confirmed the suspicion that the length of incubation might influence the effect of KCl on NH_4^+ extractability (Simon & Kennedy 1987).

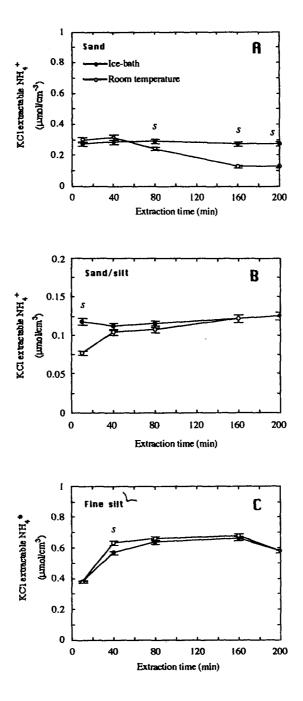


Fig. 2. Concentration of KCl-extractable NH_4^+ as a function of extraction period and temperature, in sandy (A), silt/sand (B), and silt sediment (C). Extractions were carried out at 0 °C (circles, filled) or at 15 °C (circles, unfilled), after addition of dicyandiamide (nitrification inhibitor) to sediment. s: statistically different (P < 0.001).

Table 1. Effect of extractant type (KCl, NaCl and ASW) on the concentration of NH ₄ ⁺ and
recovery of added ${}^{15}NH_{A}^{+}$ from 3 sediment types (n = 3, each treatment). Statistics among
treatments for ¹⁵ N recovery are also shown.

Station	Sediment type	Extraction period (min)	Extractant	Total extractable NH ₄ ⁺ (μmol·cm ⁻³)	¹⁵ N recovery (%)	Statistics ³
1	Sand*	40	KCl ¹	6.3	98 ± 3	
		40	NaCl1	6.4	92 ± 2	< 0.01
		40	ASW^1	6.4	97 ± 3	ns
2	Sand/silt**	40	KCl ¹	1.2	97 ± 11	
		40	NaCl ¹	1.2	90 ± 7	ns
		40	ASW^1	1.2	85 ± 3	ns
3	Fine silt***	160	KCl ²	3.2	20 ± 3	
		160	NaCl ²	2.7	75 ± 1	< 0.001
		160	ASW^2	2.8	91 ± 5	< 0.001

Extraction period was 10 minutes at 0 °C. Extraction period was 120 minutes at 0 °C. Students's test was used to statistically compare the ¹⁵N recovery data from NaCl or ASW extraction to KCl extraction. ns: non-significant at the 95% confidence level. Final concentration of added ¹⁵NH₄⁺ was: *0.6, **0.1 and ***0.3 (µmol·cm⁻³).

The temperature had a significant effect on the extraction of NH_4^+ from sediment (Fig. 2A–C); Extraction at 0 °C gave the best results, as the pool size of NH_4^+ was larger and nearly constant with time (except in silt). At 20 °C, there was some evidence in one sediment, that NH_4^+ disappeared with time (Fig. 2A), likely caused by an increase of NH_4^+ fixation into particles (Nõmmik & Vahtras 1982), as there was no increase in NO_3^- concentration during the experiment. From these results, extractions of $^{15}NH_4^+$ labelled sediments were performed at 0 °C, using the best suitable extract period found for each sediment type.

Recovery of 15NH₄ by direct extraction

A comparison was made between 2M KCl, 2M NaCl and seawater itself in extracting NH₄⁺ and added ¹⁵NH₄⁺ from these sediments types, using the most suitable extracting parameters from non-labelling experiments. The recovery of added ¹⁵NH₄⁺ was used to assess the efficiency of extraction. Variations among KCl, NaCl, or ASW-extractions were not statistically significant in sandy type sediments, where all extractants were equally efficient (Table 1). It was in silt sediment that a mostly significant variation among treatments was

found (P < 0.001), with ASW giving an almost complete recovery of $^{15}NH_4^+$ (Table 1), KCl resulted in a poor recovery of $^{15}NH_4^+$ (20%), as compared to ASW or NaCl. This confirmed the suspicion, raised by assay 1, that K⁺ might play some role in altering the availability of NH_4^+ .

No correlation was found between the NH₄ pool displaced by different extractants and the ¹⁵N recovery (Table 1). NaCl or ASW extractions gave better recovery of added ¹⁵NH₄⁺ (75% or 91% vs 20%, Table 1) than did KCl, but KCl gave a higher total NH₄ extraction. A higher availability of unlabelled NH_4^+ to K^+ relative to Na^+ has been reported in soils (Sahrawat 1979) and sediments (Simon & Kennedy 1987). An important question may arise: Why did KCl-extractions give allow recovery of added ¹⁵NH₄⁺ and a simultaneous high yield of total NH₄? At present, only two possible explanations are possible: (1) a differential disappearance of ¹⁵NH₄⁺ in relation to unlabelled NH₄ has occurred during sediment extraction, that is an isotope effect must have occurred, the unlabelled NH₄ being more easy extractable by KCl than ¹⁵NH₄. This is an agreement with results shown in Table 1 and with previous work (Laima 1993). Another possibility is that the added ¹⁵N-label was, in fact, not randomly distributed in sediment. This hypothesis has been discussed recently (Laima 1993). In any case, these results highlight the need to improve current methods to label, homogenize and extract ¹⁵NH₄⁺ from sediments.

Effect of exogenous NH_4^+ on the recovery of $^{15}NH_4^+$

It is believed that the magnitude of competition of K^+ with NH_4^+ for fixation sites will depend on the amount of K^+ added, addition of K^+ prior or after addition of NH_4^+ , mineral composition and the ratio between NH_4^+ and the K^+ (Nõmmik 1957). In assay no. 3, involving the addition of KCl to a sediment labelled with $^{15}NH_4^+$ and amended with exogenous NH_4^+ (Fig. 3), ratios of measured/added NH_4^+ in the NH_4^+ -extractable pool were < 1 and about 1 in the (KCl + NH_4^+)-extractable pool (Fig. 3A–B). Thus, a loss of NH_4^+ from exchangeable pools were definitively prevented by the added K^+ . This points to a depressive effect of the K^+ on the fixation of NH_4^+ , as reported by Nõmmik (1957) for soil systems.

In controls (no NH₄⁺ addition), about 40% of added ¹⁵N was recovered in NH₄⁺-extractable pool and only 20% in the (KCl + NH₄⁺)-extractable pool (Fig. 3). This suggests that K⁺ might have induced a differential disappearance of ¹⁵NH₄⁺ in relation to ¹⁴NH₄⁺, as the ratio NH₄⁺ added/NH₄⁺ measured was always 1 in the tested range (Fig. 2B). The increase of non-extractability of ¹⁵NH₄⁺ in presence of KCl has been recently found (Laima 1993).

Extraction of $^{15}NH_4^+$ was enhanced by addition of exogenous NH_4^+ to the sediment (Fig. 3C & D). The ^{15}N recovery in NH_4^+ -extractable and $(NH_4^+ + K^+)$ -extractable pools was 100% at NH_4^+ concentrations >80 μ mol·cm⁻³.

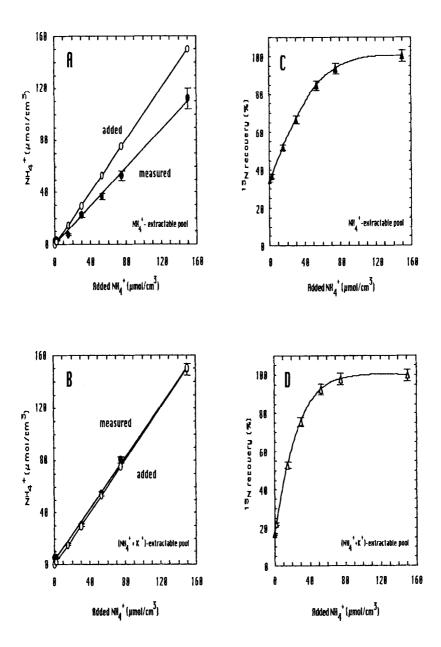


Fig. 3. The extractability of total NH_4^+ and of added $^{15}NH_4^+$ at different addition levels of exogenous NH_4^+ to a silt sediment. Concentrations of NH_4^+ (added, measured) vs added NH_4^+ are shown for the NH_4^+ -extractable pool (A) and $(NH_4^+ + K^+)$ -extractable pools (B). The ^{15}N recovery in these two pools is also shown (C & D, respectively).

KCl had a non significant effect (P > 0.5) on the recovery obtained in the NH₄⁺ extractable pool, likely because exogenous NH₄⁺ had successfully exchanged with ¹⁵NH₄⁺ that was adsorbed to sediment at the moment of addition of KCl.

Fate of ¹⁵NH₄⁺ into sediment pools

The fate of ¹⁵NH₄ was investigated in the following extracted NH₄ pools from a non-biological silt sediment: porewater (P1), KCl-extractable with residual porewater (P2) and non-exchangeable (P3). After 0.1 h of exposure to ¹⁵NH₄ there had already been a rapid equilibrium of ¹⁵NH₄ between P₁ and P2, about 50% of label was apparently lost from P1 (Table 2). Different extraction periods of P2, e.g. KCl_{1min} vs KCl_{60min} did not result in significantly different ¹⁵N recoveries in sediment pools (Table 2). Only at the initial stages of incubation of the sediment (t < 2 h), the extraction period of the P₂ pool had resulted in significantly different recoveries of label (P < 0.05) in the KCl extracts: KCl_{1min} extractions gave an higher recovery of ¹⁵NH₄⁺ as compared KCl_{60min} extractions: 17-20 vs 9-11%, respectively (Table 2). Azam et al. (1989) also reported low recoveries of added ¹⁵NH₄⁺ in the KCl-extractable pool, during the initial stages of incubation. Not all the ¹⁵NH₄⁺ that was apparently lost from P₁ did appear in P₂. At 0.1 h of incubation, over 20% of the initial label was found adsorbed to P₃ in a unknown form. The distribution of ¹⁵NH₄ was completed after 2 hours of incubation. After the equilibrium was achieved, 28% and 40% of the label was recovered from P₂ and P₃, respectively. The summed ¹⁵N recovery in P₁ + P₂ + P₃ was essentially 100% (Table 2). Thus, about 40% of added ¹⁵N was complexed to OM in a form non-recoverable by KCl, and that KCl itself induced the entry of label into these pools, before the steady-state among pools was attained. The label which entered into an non-exchangeable pool was not available for further exchange with K⁺, suggesting that K⁺ might have opened crystal lattices, into which some ${}^{15}NH_{\perp}^{+}$ (and probably some K^{+}) had entered.

Conclusion

The analysis of NH_4^+ and $^{15}NH_4^+$ extractable by KCl has shown the following points:

- (1) KCl is efficient to remove non-labelled NH₄⁺ from coastal marine sediments, although extraction conditions had some effect on yield. KCl extractions of non-biological sediments at 0 °C resulted in a expected, stable pool size of NH₄⁺ in two from three sediment types tested.
- (2) KCl is unable to remove all ¹⁵NH₄⁺ added to organic, fine textured silt sediments. The 'disappeared' ¹⁵N can be re-found in exchangeable pools, if suitable amounts of exogenous NH₄⁺ are added prior to labelling and extrac-

Table 2. Total extractable NH₄⁺ and recovery of added ¹⁵NH₄⁺ into porewater (P₁), exchangeable pool (P₂) and non-exchangeable pools (P₃). P₂ was removed after 1 min (KCl_{1min}, open) and 60 min (KCl_{60min}, parenthesis) of extraction time at 0 °C. Averages of triplicates are shown. SEs were below 10% of mean values (not shown).

Total $(P_1 + P_2 + P_3)$	15N rec (%) ³	(06) 98	90 (92)	(26) 86	(86) 66	(26) 86	93 (95)	(66) 86
geable	¹⁵ N rec (%)	20 (24)1	26 (37)1	$41 (39)^2$	$39(39)^2$	$39(39)^2$	$32(35)^2$	39 (42) ²
Non-exchangeable (P ₃)	NH_4^+ $(\mu mol \cdot cm^{-3})$	46.2 (46.3)	46.2 (46.3)	46.2 (46.3)	46.2 (46.3)	46.2 (46.3)	46.2 (46.3)	46.2 (46.3)
eable	¹⁵ N rec (%)	17 (09)	$20(11)^{1}$	$26(28)^2$	$27(28)^2$	$28(28)^2$	$29(28)^2$	30 (28) ²
Exchangeable (P ₂)	NH_4^+ (\$\mmmm \text{mol.cm}^{-3}\$)	3.3 (3.1)	3.3 (3.2)	3.6 (3.3)	3.4 (3.4)	3.2 (3.4)	3.2 (3.4)	3.2 (3.4)
er	15N rec (%)	49	4	33	33	33	32	29
Porewater (P ₁)	NH_4^+ (μ mol·cm ⁻³)	4.0	4.0	3.9	3.9	3.8	3.8	3.8
	Time (h)	0.1	-	7	4	œ	12	91

 ^{1-15}N recoveries are significantly different ta P < 0.05.

 2 ¹⁵N recoveries are not significantly different at P < 0.05.

³ Summed ¹⁵N recoveries in $P_1 + P_2 + P_3$ pools are not significantly different at P < 0.05.

tion of sediments. This is a successful improvement of a standard technique which is utilized worldwide. The technique may be useful in the future, if the objective is to measure nitrification rates from ¹⁵N discrimination kinetics. Because the original pool if inflated, it should not be used in studies of NH₄⁺ turnover in anoxic sediments.

- (3) KCl extractions resulted in a lack of correlation between the pool size of total NH₄⁺ and the corresponding ¹⁵N recovery. These observations can not be explained at present. Two major hypothesis are given: (1) KCl induces a differential disappearance of ¹⁵NH₄⁺ in relation to unlabelled NH₄⁺ and (2) the ¹⁵N-label was not randomly distributed in sediment. Further experiments are need to assess the validity of these hypothesis.
- (4) In non-steady state conditions, KCl influences the incorporation of ^{15}N into unknown, non-extractable pools. Sediments, to which $^{15}NH_4^+$ is added in order to measure $^{15}NH_4^+$ -turnover after KCl extraction, should be incubated for at least 2 h, before taking a zero time $(t_{=0})$ sample. This is necessary for achievement of the steady state of label among different NH_4^+ pools in sediment. The suitable $t_{=0}$ may vary from sediment to sediment.

The problems that seem to be associated with KCl, particularly its failure to remove ¹⁵NH₄⁺ adsorbed to organic bound pools from physical processes, suggest that KCl should be used with caution in silt sediment. An alternative, successful methodology using Na₄P₂O₇ has been developed to solubilize non-extractable ¹⁵NH₄⁺ (Laima 1993). Other authors have also developed more powerful techniques than KCl, for example based on electroultracentrifigation (Fort et al. 1993).

Acknowledgements

This paper is based on a Ph.D. thesis from the University of Aarhus, Denmark. I thank Prof. Henry Blackburn – Institute of Biological Sciences, for the use of laboratory facilities and Poul Skyum for help on graphics. I gratefully acknowledge a research grant from the National Council for Research in Science and Technology (JNICT).

References

Amberger A (1989) Research on dicyandiamide as a nitrification inhibitor and future outlook. Communications in Soil and Plant Analysis 20: 1933–1955

Azam F, Mulvaney RL & Stevenson FJ (1989) Transformation of ¹⁵N-labelled leguminous plant material in three contrasting soils. Biology and Fertility of Soils 8: 54-60

Bremner JM (1965) Inorganic forms of nitrogen. In: Black CA (Ed) Methods of Soil Analysis. Part 2. Agronomy 9 (pp 1179–1237). American Society of Agronomy, Madison

Brodrick S, Cullen P & Maher W (1987) Determination of exchangeable inorganic nitrogen species in wetland soils. Bulletin of Environmental Contamination Toxicology 38: 377–380

- Fort RS, Sheppers J & Holzhey CS (1993) Comparison of potentially mineralizable nitrogen using electro-ultracentrifugation and some other procedures. Journal of Environmental Science & Health A28 6: 1171-1183
- Guiraud G & Marol C (1992) Influence of temperature on mineralization kinetics with a nitrification inhibitor (mixture of dicyandiamide and ammonium thiosulphate). Biology and Fertility of Soils 13: 1-5
- Haines E, Chalmers A, Hanson R & Sherr B (1977) Nitrogen pools and fluxes in a Georgia salt marsh. In: Wiley ML (Ed) Estuarine Processes. Vol 2 (pp 241-2542). Academic Press, New York
- Jørgensen BB & Sørensen J (1985) Seasonal cycles of O₂, NO₃⁺ and SO₄² reduction in estuarine sediments: the significance of an NO₃⁻ reduction maximum in spring. Marine Ecology Progress Series 24: 65–74
- Laima MJC (1992) Evaluation of the indophenol method to measure NH₄⁺ in extracts from coastal marine sediments. Marine Chemistry 39: 283-296
- Laima MJC (1993) Recovery of ¹⁵NH⁺₄ in labelling experiments on coastal marine sediments. Marine Chemistry 44: 31–42
- Mackin JE & Aller RC (1984) Ammonium adsorption in marine sediments. Limnology and Oceanography 29: 250–257
- Mackown CT, Brooks PD & Smith MS (1987) Diffusion of nitrogen-15 in Kjeldahl digests for isotope analysis. Soil Science Society of American Journal 51: 87–80
- McCarthy GW & Bremner JM (1989) Laboratory evaluation of dicyandimide as a soil nitrification inhibitor. Communications in Soil Science and Plant Analysis 20: 2049–2065
- Muus BJ (1967) The infauna of Danish estuaries and lagoons. Medd. Danmarks Fiskeri og Havundersøgelse. NS 5: 1-36
- Nõmmik H (1957) Fixation and defixation of ammonium in soils. Acta Agricultura Scandinavia 7: 395–436
- Nommik H & Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ (Ed) Nitrogen in Agricultural Soils. Agronomy 22 (pp 123–171). American Society of Agronomy, Madison
- Sahrawat KL (1979) Evaluation of some chemical extractants for determination of exchangeable ammonium in tropical rice soils. Communications in Soil Science and Plant Analysis 10: 1005–1013
- Simon NS & Kennedy MM (1987) The distribution of nitrogen species and adsorption of ammonium in sediments from The Tidal Potomac River and Estuary. Estuarine Coastal & Shelf Science 25: 11-26
- Wang L & Øien A (1986) Determination of Kjeldahl nitrogen and exchangeable ammonium in soil by the indophenol method. Acta Agricultura Scandinavia 36: 60-70